Binary Matrix Guessing Problem

نویسنده

  • cCaugri Latifouglu
چکیده

We introduce the Binary Matrix Guessing Problem and provide two algorithms to solve this problem. The first algorithm we introduce is Elementwise Probing Algorithm (EPA) which is very fast under a score which utilizes Frobenius Distance. The second algorithm is Additive Reinforcement Learning Algorithm which combines ideas from perceptron algorithm and reinforcement learning algorithm. This algorithm is significantly slower compared to first one, but less restrictive and generalizes better. We compare computational performance of both algorithms and provide numerical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On multiple descriptions and team guessing

Witsenhausen's hyperbola bound for the multiple description problem without excess rate in case of a binary source is not right for exact joint reproductions. However, this bound is tight for almost{exact joint reproductions (Theorem 1, conjectured by Witsenhausen). The proof is based on an approximative form of the team guessing lemma for sequences of random variables. (This result may be of i...

متن کامل

Defensive forecasting for optimal prediction with expert advice

The method of defensive forecasting is applied to the problem of prediction with expert advice for binary outcomes. It turns out that defensive forecasting is not only competitive with the Aggregating Algorithm but also handles the case of “second-guessing” experts, whose advice depends on the learner’s prediction; this paper assumes that the dependence on the learner’s prediction is continuous.

متن کامل

Estimation Efficiency Under Privacy Constraints

We investigate the problem of estimating a random variable Y ∈ Y under a privacy constraint dictated by another correlated random variable X ∈ X , where estimation efficiency and privacy are assessed in terms of two different loss functions. In the discrete case, we use the Hamming loss function and express the corresponding utility-privacy tradeoff in terms of the privacy-constrained guessing ...

متن کامل

The Impact of Correction for Guessing Formula on MC and Yes/No Vocabulary Tests' Scores

A standard correction for random guessing (cfg) formula on multiple-choice and Yes/Noexaminations was examined retrospectively in the scores of the intermediate female EFL learners in an English language school. The correctionwas a weighting formula for points awarded for correct answers,incorrect answers, and unanswered questions so that the expectedvalue of the increase in test score due to g...

متن کامل

Classification of Anti-learnable Biological and Synthetic Data

We demonstrate a binary classification problem in which standard supervised learning algorithms such as linear and kernel SVM, naive Bayes, ridge regression, k-nearest neighbors, shrunken centroid, multilayer perceptron and decision trees perform in an unusual way. On certain data sets they classify a randomly sampled training subset nearly perfectly, but systematically perform worse than rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017